
Efficient 3D Movement-Based Kernel Density
Estimator and Application to Wildlife Ecology

Jeff A. Tracey
Western Ecological Research Center

U.S. Geological Survey
San Diego, CA 92101

jatracey@usgs.gov

James K. Sheppard
San Diego Zoo

Institute for Conservation Research
Escondido, CA 92027

jsheppard@sandiegozoo.org

Glenn K. Lockwood
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA 92093
glock@sdsc.edu

Amit Chourasia

San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA 92093
amit@sdsc.edu

Mahidhar Tatineni
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA 92093
Mahidhar@sdsc.edu

Robert N. Fisher

Western Ecological Research Center
U.S. Geological Survey
San Diego, CA 92101

rfisher@usgs.gov

Robert S. Sinkovits
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA 92093
sinkovit@sdsc.edu

ABSTRACT
We describe an efficient implementation of a 3D movement-
based kernel density estimator for determining animal space use
from discrete GPS measurements. This new method provides
more accurate results, particularly for species that make large
excursions in the vertical dimension. The downside of this
approach is that it is much more computationally expensive than
simpler, lower-dimensional models. Through a combination of
code restructuring, parallelization and performance
optimization, we were able to reduce the time to solution by up
to a factor of 1000x, thereby greatly improving the applicability
of the method.

Categories and Subject Descriptors
D.1.3 Parallel programming, H.3.4 Performance Evaluation, J.2
Mathematics and statistics, J.3 Biology and genetics

General Terms
Performance, Algorithms

Keywords
Parallel computing, performance optimization, biotelemetry,

wildlife ecology, visualization

1. INTRODUCTION
The increasing sophistication and miniaturization of digital
biotelemetry tracking devices (biologgers) has enabled
researchers to collect large, highly accurate and long-term
datasets on the movements of free-ranging animals that would
normally be prohibitively difficult to observe directly in the wild
[1-3]. Global Positioning System (GPS) biologgers can now
record an animal’s geographic coordinates (e.g. latitude and
longitude) at accuracies to within 2m for deployments lasting
more than a year, or even longer if powered by a solar panel.
GPS biologgers have also dramatically reduced in size and can
now be safely attached to small animals. For example, the
California condors reintroduced to their former habitat in
Mexico by San Diego Zoo Global (SDZG) have a <50g solar-
powered GPS biologger attached to their wings. These condor
tags provide hourly location fixes from each bird at a resolution
of just a few meters that can be downloaded directly from the
Internet [4].

Advances in biotelemetry technologies have contributed to
major advances in our understanding of key concepts of animal
ecology, including resource use, home range, dispersal, and
population dynamics [5]. Biotelemetry technologies are also
becoming powerful tools for informing strategies for conserving
endangered species and habitats. For example, GPS biologgers
can provide accurate information on the movements of a tracked
animal that can then be matched to the environmental attributes
that the species most often associates with to build an accurate
and biologically realistic picture of its ranging patterns and
habitat use. Conservation managers and regulatory agencies can,
in turn, use this scientific information to gauge and improve the

(c) 2014 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the United States
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes
only.
XSEDE '14, July 13 - 18 2014, Atlanta, GA, USA
Copyright 2014 ACM 978-1-4503-2893-7/14/07…$15.00.

effectiveness of existing and proposed measures to protect
important animal populations, such as habitat conservation
zoning, reserve boundaries and wildlife corridors.

Biologists typically define non-random and restricted patterns of
space use of individual animals using a home range estimator. A
wide range of empirical home range estimators have been
developed to model animal spatial behaviors, and more recently,
the interplay between the environment and an animal’s cognitive
map of its habitat [5, 6]. Home range estimators typically
summarize patterns of animal spatial behaviors as densities of
space use relative to time derived from nonparametric estimates
of animal locations across a landscape. A prime example is the
spatial probability density function known as the utilization
distribution (UD), that estimates the probabilities of where an
animal might have occurred at an arbitrary time during the
period the animal was observed [7, 8]. The kernel density
estimator (KDE), which uses a weighted sum of kernels placed
over observed animal locations [9], has become a standard
technique for estimating home ranges. However, KDEs are
criticized for sometimes excluding areas that have been used by
animals (type I errors) or including areas that have not been used
(type II errors) and biotelemetry data sets with relatively short
time intervals between locations need to be subsampled to
ensure independence [10].

The Brownian bridge approach [11] provides an alternative
KDE that integrates kernels over time along a movement path
interpolated between observed locations. Benhamou [12]
distinguished Worton’s location-based kernel density estimators
(LKDE) from movement-based kernel density estimators
(MKDE), which includes Brownian bridge and biased random
walk models [11, 12]. Unlike LKDEs, MKDEs account for time
between consecutive observations, do not requiring independent
samples from the UD, and more realistically represent the space
used by an animal.

The coevolution of biologgers and home range estimators is
bringing inferences on animal space use closer to biological
reality. However, current estimators fail to capitalize on the 3D
profiles offered by modern GPS biotelemetry datasets. Animal
space-use is multi-dimensional and can be characterized within
two x and y planar spatial dimensions, as well as a z-dimension
representing altitude (for flying or arboreal species), elevation
(for terrestrial species), or depth (for aquatic species).
Biologgers have been providing multidimensional data on
animal movements for decades. Yet surprisingly, there are
almost no modeling techniques that explicitly integrate the 3rd
spatial dimension of the z-coordinate into quantitative
characterizations of animal spatial behaviors. Disregarding the z
dimension greatly limits our understanding of the vertical
component of animal ranging patterns and restricts our ability to
define and predict how animals move through landscapes and
select and use habitats [13]. Traditional 2D home range
estimators may also misrepresent the space use of animals that
occupy habitats with a strong vertical component.

While 3D visualization and modeling tools have been used
extensively in disciplines like chemistry, climatology, and
physics, biologists are only beginning to recognize the
theoretical and applied value of incorporating the vertical aspect
into analyses of animal space use. We recently advanced the
movement-based kernel density estimator method of calculating
animal home ranges by extending it into three-dimensions (3D
MKDE [14]. 3D models of animal space-use can enhance
conservation strategies for mitigating the effects of

anthropogenic impacts on vagile wildlife populations. For
example, analyzing the 3D MKDE home range volumes of birds
and bats in relation to the spatiotemporal distribution of aircraft
flight paths, buildings, or wind turbines will provide more
accurate estimates of collision risk than 2D models. Improved
understanding of the 3D spatial behaviors of the many aquatic
animals currently being tracked with biologgers, such as marine
turtles, would help managers to minimize their incidental
capture by fisheries. 3D MKDEs could also be incorporated into
predictive models of wildlife exposure to soil, air and water
borne contaminants.

2. MKDE ALGORITHM
In this section we provide the formalism for the 3D MKDE
method. Our objective is to use observed location data to
develop a density estimate describing space-use of an animal at
the times it was not observed. We follow the method of Tracey,
Sheppard, et al., who describe the development method in great
detail and provide several illustrative examples [14]. Here, we
describe computational aspects of the method in greater depth.

2.1 Data set
Suppose we have made n observations of the locations of an
individual animal. We index observations by m=0, …, n-1. The
mth observation consists of an x-coordinate, a y-coordinate, a z-
coordinate, and a time which we denote xm, ym, zm, tm,
respectively. We require the observations to be ordered in time
such that tm-1 < tm < tm+1 for any m. Further, we assume that the
observed locations subject to observation error described by
normal distributions with means xm, ym, zm, and variances !m

2 ,

 !m
2 , and !m

2 , respectively. Notice that we assume that the error
variances are the same for the observed values of x and y. The
observation error variances !m

2 and !m
2 must be estimated

independently, and are typically either provided by the
manufacturers of the telemetry equipment or estimated from
field trials. In some cases, they are the same for all m when
observation-specific variances cannot be estimated. The mth
move step is defined by two consecutive observations m and
m+1. In order to ensure that we do not include move steps with
unusually long time intervals, for example when the GPS
receiver fails to acquire one or more position fixes, we only use
move steps where !tm = tm+1 " tm # !tmax given a user-specified

maximum allowed time of !tmax . We use I(m) = 1 if this
condition is met, and 0 otherwise, as an indicator function.

2.2 Spatial Domain
We compute the probability for every voxel (3D cell) on a
regular grid in three-dimensional space. We index rows by
i=0,…,I-1, columns by j=0,…,J-1, and levels by k=0,…,K-1
where I, J, and K are the number of rows, columns, and levels,
respectively. Rows, columns, and levels correspond to the y-, x-,
and z-dimensions of the 3D MKDE, respectively. We index
voxels by v=i+j!I+k!I!J. V denotes the random variable for
the voxel in which the individual is found. We define the 3D
regular grid on which the density will be computed by 1D arrays
of voxel center coordinates in the x, y, and z spatial dimensions
denoted xGrd, yGrd, and zGrd. Because we assume a regular
grid, the half the lengths of the sides of a voxel in each
dimension are hx = (xGrd[1]-xGrd[0])/2, hy = (yGrd[1]-
yGrd[0])/2, and hz = (zGrd[1]-zGrd[0])/2. We can determine

the extent of the grid by [xGrd[0]- hx, xGrd[J-1]+ hx] for the x-
dimension and similarly for the other spatial dimensions.

Often, we must bound the physical space an animal can occupy
in the z-dimension in order to produce a more realistic 3D
MKDE [14].We can set a lower and upper bound the density in
the z-dimension at an location (x,y) by a(x,y) and b(x,y),
respectively. These bounds can be described by two 2D rasters,
but whether or not the MKDE must be bounded above or below
is case specific. For example, we use a digital elevation model to
set the lower boundary for a condor.

2.3 Algorithm
We estimate the 3D MKDE using a trivariate normal kernel
integrated over time for each observed move step. The kernel
describing the probability density at time t and location (x,y,z) is

 fXYZ (x, y, z | u(t),!(t)) ,

where µ(t) is a vector of means and !(t) is the 3 ! 3
covariance matrix. We assume that the joint density can be
represented by the product of the univariate densities for each
spatial dimension as

fXYZ (x, y, z | u(t),!(t)) = fX (x |µ1(t)," xy
2 (t))#

fY (y |µ2(t)," xy
2 (t))#

fZ (z |µ3(t)," z
2(t))

That is, we assume independence in each spatial dimension,
conditional on the constraints in the z-dimension. This
assumption can be exploited to increase the computational
efficiency of the 2D or 3D MKDE calculations.

To obtain the average probability that the animal was in a given
voxel v at some arbitrary time during the time interval [tm, tm+1),
given that the voxel v is within the allowed range in the z-
dimension, we calculate

11
(v) (x, y,z | (), ())

j x i ym k z

m j x i y k z

x h y ht z h

m XYZ
m t x h y h z h

P V f t t dzdydxdt
W

+ + + +

! ! !

= = "# # # # u .

However, if the voxel v is not in the allowed range in the z-
dimension, then () 0mP v V= = .

Next, we sum over all valid observed move steps by
1

0

1() () ()
n

m m
m

P v V W P v V I m
W

!

=

= = =" .

Finally, we obtain the normalization constant by calculating
1 (,)

(,)

(, , | (), ())
m

m

t b x y

m XYZ
t a x y

W f x y z t t dzdydxdt
+ ! !

"! "!

= #$ $ $ $ u

and
1

0
()

n

m
m

W W I m
!

=

=" .

In practice, this amounts to dividing the non-normalized
probability for each voxel by the sum of the non-normalized
probabilities over all voxels.

In addition, two variance parameters, !
2 and !

2 , must be
estimated form the data as described by Tracey, Sheppard, et al.

[14]. Finally, the user must specify the number of integration
time steps (nSteps) per move step.

Computationally, we iterate through each move step m,
numerically integrate over time using the trapezoid rule by
iterating through nStep integration time steps per move step,
then iterate through the x, y, and z dimensions of the regular
grid. This process, together with the auxiliary functions needed
to calculate means, variances and integrals, are described by the
function Compute3DMKDE() in the Appendix.
The function KernelMean() describes the algorithm for
calculating the vector of kernel means as a function of time. This
function calculates the expected location of the animal at a time
t on the interval [tm, tm+1) for move step m. The function
KernelVar() describes the algorithm for computing the diagonal
elements of the covariance matrix

!(t) =

" xy
2 (t) 0 0

0 " xy
2 (t) 0

0 0 " z
2(t)

#

$

%
%
%
%

&

'

(
(
(
(

 ,

where
! xy

2 (t) is the time-dependent kernel variance for the x-

dimension and y-dimension ! z
2(t) is the time-dependent

variance for the z-dimension. These variances incorporate
observation error and uncertainty in the animal’s position at
unobserved times t between tm and tm+1. Finally, function
IntegrateNormal() provides the method for integrating the
univariate normal density for each spatial dimension. The
function Phi() takes a standardized normal random variable as
its argument and returns the corresponding value of the standard
normal cumulative density function (c.d.f.)

3. OPTIMIZATION AND
PARALLELIZATION OF MKDE
ALGORITHM
One downside of implementing a fully 3D MKDE is the greatly
increased computational expense relative to simpler, lower-
dimensional methods. We decided to take a two-pronged
approach to making the computations more tractable:
restructuring of the code to optimize the underlying algorithm
and shared memory parallelization of the key loops.

3.1 Program restructuring
The computationally demanding portion of the original version
of the code logically consisted of four sets of nested loops

1. Groups: sets of observations for a particular animal over a
given time

2. Voxels: 3D discretization of the animal domain
3. Observations: GPS measurements at particular time
4. Interpolations: Interpolated values of location at times

between observations

At the innermost loop, a contribution is made to the voxel
density from a kernel function that depends on both the
horizontal and vertical distances between the voxel and the
interpolated point. Although the original code makes optimal
use of cache by accessing the voxels in their storage order, it
results in the repeated calculation of kernel parameters that do
not depend on the distance to the voxel. For example, the two
variances that are needed to evaluate the kernel depend only on

the distance between the interpolated point and the bounding
observations. Reordering so that the loop over voxels occurs at
the innermost level of nesting makes it easier to avoid these
repeated calculations

Variances, coordinates of the interpolated point and other kernel
parameters are now evaluated once and then used for all of the
voxels. After reordering the loops, we rewrote the loop over
voxels as an equivalent set of nested loops over the three spatial
dimensions. This makes additional opportunities for the
avoidance of unnecessary calculations more obvious. For
example, quantities that do not depend on the z-coordinate, such
as the squared distance in the xy-plane between voxel and kernel
origin can be pre-computed before entering the new innermost
loop and repeatedly used. These speedups make it practical to
implement more meaningful, but also more computationally
expensive, quantities such as the integral over the voxel volume
to yield voxel probabilities.

3.2 Cutoff on kernel evaluation
As originally written, the kernel was evaluated at every voxel.
The contribution from a kernel falls off rapidly with the distance
from the kernel origin, particularly for interpolated points that
are close to the observations where the variance is low. The
restructuring of the code described in the previous section makes
it much more straightforward to apply a variance dependent
cutoff distance. Rather than applying the cutoff within the
innermost loop, bounds on the voxel loop indices are pre-
determined thereby limiting iterations to only those voxels that
will be within the cutoff.

The application of a cutoff changes the inherent scalability of
the code with problem size. Given n observations and N voxels,
the original run time scaled as O(nN). The use of a cutoff results
in a fixed amount of work per observation and reduces the
scaling to O(n). For a simple uniform cutoff of d cells in all
three spatial dimensions and ignoring boundary effects, the time
to solution will be shortened by a factor of N/(8d3). The scaling
behavior when using a more realistic variance-dependent cutoff
will be more complicated and depends on the characteristics of
the data set. The relative error when applying a cutoff will be
problem dependent, but for our test problem using a tight cutoff
of 20 voxels in each direction resulted in only 0.08% error
relative to original code. At a 50-voxel cutoff, no error was
detected.

3.3 Shared memory parallelization
While an MPI version of the code was already available, we felt
that the shared memory version might be preferable for a
number of reasons. First, the natural chunk of work is at the
level of an individual animal observed over a period of time
(e.g. condor-month or manatee-week). Chunks could be
distributed to different processes, each of which runs as a multi-
threaded job on a single compute node. Although the scalability
of the shared memory version is limited by the number of
compute cores available in a node, this should not be a handicap
assuming that the time to solution for an individual chunk is
sufficiently short and that the researchers are more concerned
with throughput rather than minimizing the time to solution for a
single unit of work.

Second, given the nature of the computations, where each voxel
can be updated independently, a threaded version of the code
can be very simple to develop, maintain and deploy. In fact,
after restructuring the code to achieve better performance as
described in the previous section, the parallelization involved

the addition of just a single OpenMP directive before the
outermost (x-coordinate) of the three spatial dimension loops.
Our application is targeted at a wide range of users with varying
degrees of sophistication and access to hardware ranging from
laptops to supercomputers. By avoiding the need to locally
install an MPI library, the user only needs to download a single
binary. For those users who decide to build their own
executables from source, they would only need access to an
OpenMP capable C++ compiler.

Finally, a shared memory implementation may potentially be
more efficient, particularly if the parallel portion of the code
contains no serial or critical regions. Even within a node, the
MPI overhead can degrade performance unless a high-
performance intra-node communications library such as LiMIC
[15] is available.

3.4 Benchmarks
The MKDE algorithm is in a state of active development and
code modifications made as part of this collaboration are
reintegrated into newer versions of the software. As a
consequence, it is not practical to reverse engineer later versions
to match the original structure. The following benchmarks
should be considered as representative snapshots of an earlier
version of the code. In addition, the optimal way to apply a
variance-dependent cutoff is still being investigated. For
simplicity, we restrict our study to a fixed-size cutoff.
Nonetheless, these timings provide a general overview of the
impact of our changes on the performance.

Table 1. Benchmark of test problem based on 337 Condor
observations from September 2010. Timings for both original
and optimized codes obtained from parallel runs using 16 cores
on a single Gordon compute node. All executables built with
Intel C++ compiler (icpc) version 13.0.1 with -O3, -xHOST and
-mkl. Optimized version of code includes reordering of loops,
pre-calculation of reused quantities and other statement-level
modifications. In rows 4-9, d=D refers to the size of the fixed
cutoff.

version t(s) speedup
Original 1829 1.0
Optimized 139 13.2
Opt w/ d=100 25.3 72.3
Opt w/ d=60 9.5 192.5
Opt w/ d=50 7.1 257.6
Opt w/ d=40 5.2 351.7
Opt w/ d=30 2.7 677.4
Opt w/ d=20 1.4 1306.4

A subsequent round of optimizations took advantage of the fact
that the kernel can be separated into a product of functions that
depend separately on the horizontal (x and y) and vertical (z)
distances from the kernel origin. A vector of the z-dependent
function results can be calculated once before entering the loop
over voxels and reused at every location in the xy-plane. These
timings are presented separately in Table 2 since they rely on a
regular grid, the usual case, and would not be applicable to an
implementation of the algorithm on an irregular grid.

4. VISUALIZATION
The output from the code is a cell-centered scalar probability
density on a 3D rectilinear uniform grid. This was written out by
the original code in VTK ASCII format and visualized in
Paraview. The original process was refined as follows making it
possible to visualize results in both Paraview and VisIt software.

4.1 Restructuring output
The code was restructured to write output as a brick of doubles
in binary format, wrapped with an XDMF metadata header to

Table 2. Benchmark of test problem based on 337 Condor
observations from September 2010, with additional
optimizations that take advantage of kernel function being
separable into product of z-dependent and xy-dependent terms.

version t(s) speedup
Original 1829 1.0
Optimized 42.5 43.0
Opt w/ d=100 3.87 472
Opt w/ d=60 1.67 1095
Opt w/ d=50 1.25 1463
Opt w/ d=40 0.87 2102
Opt w/ d=30 0.67 2729
Opt w/ d=20 0.46 3976

describe the binary data as a cell centered scalar 3D unigrid. The
reduction in file size relative to the original ASCII data was
found to be 85%, a ratio that held for a range of original file
sizes. Another output restructuring was made to compute voxel
probabilities by integrating the kernels over the voxel rather than
voxel-centered probability densities. With earlier code, the
voxel-centered probability densities were extremely small and
close to hardware precision epsilon. This caused reliability
concerns, especially when using the output data in other tools.

4.2 Isosurface Extraction
One key interest for the scientist is to visualize and explore the
bird’s habitat envelope at multiple probability densities. This
required computation of corresponding isovalues, which were
calculated as follows

• Create 1D indexed array A, containing voxel probabilities
• Create 2D array B, where B[1] contains probabilities and

B[2] contains corresponding index from array A
• Sort 2D array B in place with probabilities as key in

increasing order
• Create another 2D array C with C[1] containing cumulative

densities from sorted array B[1] and C[2] containing
corresponding index in sorted array B[2]

• Pick a percentage of the total density of interest, for
example 95%, then perform a lookup in C[1] for 95% to
identify original index in C[2].

• Look up the scalar probability density in array A at index
found above. This is the isovalue for 95% envelope

• Create an isosurface at above isovalue

Figure 1 shows the trajectory and isosurfaces with probability
envelopes at 99%, 95%, 90%, 75% and 50%.

4.3 Adding Context
While the visualization of scalar probability density is useful, it
requires context to provide further insight about a bird’s location
and habitation zone. To accomplish this a digital elevation
model (DEM) of the terrain was added and further refined by
addition of texture map marking features like shorelines, etc.
Other elements like wind turbines are also being added. This has
enabled the scientist to explore the habitat zone in geographic
context.

4.4 Visualization Discussion
Visualization was used to compare the output from original and
revised MKDE code, as well as with the observed trajectories.
We are able to observe the possible nest locations of the birds
and their habitat in 3D. Currently, the visualization is setup as a
pipeline in VisIt software, which reads data including temporal
probability density, and corresponding isovalues and DEM. We
are training the scientist to perform these visualizations on local
desktop as well as remotely on Gordon supercomputer at SDSC.

5. FUTURE WORK
The large improvements in the code performance make it
possible to carry out calculations that were previously not
feasible. Obviously it will be easier to process larger amounts of
data, obtained either by tracking greater numbers of animals or
recording observations at a higher frequency. Enhancement to
the MKDE implementation and their impact on the final results
can also be evaluated more quickly. One novel idea that was
recently proposed was to calculate probability contour volumes
using a sliding time window. This might entail an order or more
magnitude of work, but would eliminate or reduce the sharp
discontinuities observed in the visualization when jumping from
one month to the next. We would also like to pipeline the
visualization such that few predetermined plots are created after
each computation. We also plan to leverage SeedMe.org
infrastructure [16] to share the new results ubiquitously. Finally,
a very fast algorithm allows calculations to be launched and
have results returned in just seconds. This might be an extremely
valuable capability for a conservation biologist in the field who
wants immediate information on the recent range of one or more
animals. Finally, researchers are beginning to consider
calculations involving multiple animals and overlaps in the
space use. These suggestions are just a beginning and we are
hoping that the end users will drive new use cases based on the
enhanced capabilities.

6. ACKNOWLEDGMENTS
We acknowledge the following California condor funding
agencies and collaborators: United States Fish and Wildlife
Service, Instituto Nacional de Ecologia, Comision Nacional Para
El Conocimiento y Uso de la Biodiversidad, Secretaria de Medio
Ambiente y Recursos Naturales, Wildcoast/Costasalvaje,
Sempra Energy, Michael Wallace, Lisa Nordstrom and the
SDZG condor field team. We thank Jesse Lewis for his helpful
discussions related to Brownian bridge models. RSS, MT, AC
and GL also received partial support from NSF grant: OCI
#0910847 Gordon: A Data Intensive Supercomputer. Any use of
trade, product, or firm names is for descriptive purposes only
and does not imply an endorsement by the U.S. Government.

Figure 1 The image depicts a composite visualization for a volume 98.5k x 223.5 km x 5.5km, where vertical axis has been scaled by 5x. Panel (A) shows trajectory of a condor in March,
2010. Panel (B) is same as (A) with addition of isosurface encompassing 50% probability region. Panels (C-F) successively add isosurfaces at 75%, 90%, 95% and 99% probabilities.

7. REFERENCES

[1] Cagnacci, F., Boitani, L., Powell, R. A. and Boyce, M. S.
Animal ecology meets GPS-based radiotelemetry: a perfect
storm of opportunities and challenges. Philosophical
transactions of the Royal Society of London. Series B, Biological
sciences, 365, 1550 (Jul 27 2010), 2157-2162.

[2] Hebblewhite, M. and Haydon, D. T. Distinguishing
technology from biology: a critical review of the use of GPS
telemetry data in ecology. Philosophical transactions of the
Royal Society of London. Series B, Biological sciences, 365,
1550 (Jul 27 2010), 2303-2312.

[3] Tomkiewicz, S. M., Fuller, M. R., Kie, J. G. and Bates, K. K.
Global positioning system and associated technologies in animal
behaviour and ecological research. Philosophical transactions of
the Royal Society of London. Series B, Biological sciences, 365,
1550 (Jul 27 2010), 2163-2176.
[4] Sheppard, J. K., Walenski, M., Wallace, M. P., Velazco, J. J.
V., Porras, C. and Swaisgood, R. R. Hierarchical dominance
structure in reintroduced California condors: correlates,
consequences, and dynamics. Behavioral Ecology and
Sociobiology 67 (2013), 1227-1238.

[5] Powell, R. A. and Mitchell, M. S. What is a home range?
Journal of Mammalogy 93 (2012), 948-958.

[6] Spencer, W. D. Home ranges and the value of spatial
information. Journal of Mammalogy, 93 (2012), 929-947.

[7] Silverman, B. W. Density estimation for statistics and data
analysis. Chapman and Hall, London ; New York, 1986.
[8] Van Winkle, W. Comparison of several probabilistic home
range models. Journal of Wildlife Management 39 (1975), 118-
123.

[9] Worton, B. J. Kernel methods for estimating the utilization
distribution in home-range studies. Ecology, 70 (1989), 164-168.
[10] Fieberg, J. and Börger, L. L. Could you please phrase
“home range” as a question? Journal of Mammalogy 93 (2012),
890-902.
[11] Horne, J. S., Garton, E. O., Krone, S. M. and Lewis, J. S.
Analyzing animal movements using Brownian bridges. Ecology,
88, 9 (Sep 2007), 2354-2363.
[12] Benhamou, S. Dynamic approach to space and habitat use
based on biased random bridges. PloS ONE, 6, 1 (2011),
e14592.

[13] Belant, J. L., Millspaugh, J. J., Martin, J. A. and Gitzen, R.
A. Multi-dimensional space use: the final frontier. Frontiers in
Ecology and the Environment, 10, 1 (2012), 11-12.

[14] Tracey, J. A., Sheppard, J. K., Zhu, J., Wei, F., Swaisgood,
R. R. and Fisher, R. N. Movement-based Estimation and
Visualization of Space Use in 3D for Wildlife Ecology and
Conservation., PLoS ONE (in revision).

[15] Jin, H.-W., Sur, S., Chai, L. and Panda, D. K. Limic:
Support for high-performance mpi intra-node communication on
linux cluster. In IEEE International Conference on Parallel
Processing ICPP 2005, (2005).

[16] Chourasia, A., Wong-Barnum, M. and Norman, M. L.
SeedMe preview: your results from disk to device. In
Proceedings of XSEDE13 Conference (Atlanta, GA 2013).

8. APPENDIX : CODE OUTLINE
In the pseudocode, the arguments x, y, z, and t are 1D arrays of
double values representing our observed data. That is, the mth
observation (denoted xm, ym. zm, and tm in the text) is (x[m],
y[m], z[m], t[m]). The arguments obsVarXY and obsVarZ
(denoted 2

m! and 2
m! in the text) are 1D arrays of double

variables where the mth element is the observation error variance
for the move step in the (x,y)-dimensions and z-dimension,
respectively. The arguments mvVarXY and mvVarZ are single
double precision variances for the move variances parameters (
2! and 2! in the text) in the (x,y)-dimensions and z-dimension,

respectively. The 1D arrays of double precision floating point
variables xGrd, yGrd, and zGrd define the 3D regular grid on
which we compute the 3D MDKE, as described in the text.
From the 2D arrays lower[][] and upper[][] which correspond to
a(x,y) and b(x,y) in the text, we create the 1D integer arrays
lowerVox[] and upperVox[], which contain indexes into zGrid
for each i,j, where lower[i][j] corresponds to lowerVox[i+j!I]
and upper[i][j] corresponds to lowerVox[i+j!I]. The value of
lowerVox[i+j!I] equals the number of elements in zGrd less
than lower[i][j], while upperVox[i+j!I] equals the number of
elements in zGrd less than upper[i][j] minus one. The double-
precision argument tMx (!tmax in the text) is the maximum
allowed time duration of a move step that can be included in the
MKDE estimation. Finally, nStep is the number of numerical
integration time steps per move step. In the functions
KenrelMean() and KernelVar(), t is the time in the numerical
integration, x0, y0, z0, and t0 are the observed data at the
beginning of the move step while x1, y1, z1, and t1 are the
observed data at the end of the move step (i.e. observations m
and m+1 for the mth move step).

Compute3DMKDE(x: double[], y: double[],
 z: double[], t: double[],
 tMx: double, obVarXY: double[],
 obVarZ: double[], mvVarXY: double,
 mvVarZ: double, xGrd: double[],
 yGrd: double[], zGrd: double[],
 lowerVox: int[], upperVox: int[],
 tMx: double, nStep: int)
 : double[]

nObs " length(t)

(nx, ny, nz) " length(xGrd, yGrd, zGrd)

// we assume a regular grid
xsz " xGrd[1] – xGrd[0]
ysz " yGrd[1] – yGrd[0]
zsz " zGrd[1] – zGrd[0]

nv " nx*ny*nz
mkde " double[nv] // init all elements to 0
W " 0

for (m in 0 to nObs - 2)
 deltaT " t[m+1] – t[m]
 if (deltaT <= tMx)
 tStep " deltaT/nStep
 tmpIntegral " 0
 for (s in 0 to nStep)
 tCurrent " t[m] + s*tStep
 mu " KernelMean(tCurrent, t[m], t[m+1],
 x[m], x[m+1],
 y[m], y[m+1],
 z[m], z[m+1])
 var " KernelVar(tCurrent, t[m], t[m+1],
 obVarXY[m], obVarXY[m+1],
 obVarZ[m], obVarZ[m+1],
 mvVarXY, mvVarZ)

 for (i in 0 to nx – 1) //Parallel loop
 probX " IntegrateNormal(xGrd[i]-xsz,
 xGrd[i] + xsz, mu[0], var[0])
 for (j in 0 to ny – 1)
 probY " IntegrateNormal(yGrd[j]-ysz,
 yGrd[j] + ysz, mu[1], var[1])
 kLo " lowerVox[i + j*nx]
 kHi " upperVox[i + j*nx]
 for (k in kLo to kHi)
 probZ " IntegrateNormal(zGrd[k]-zsz,
 zGrd[k]+zsz, mu[2], var[2])
 v " i + j*nx + k*nx*ny
 probXYZ " probX*probX*probZ
 if (s == 0 or s == nStep)
 tmp " tStep*probXYZ/2
 else
 tmp " tStep*probXYZ
 end if
 mkde[v] " mkde[v] + tmp
 W " W + tmp
 end for // z
 end for // y
 end for // x

 end for // int step
 end if // cond
end for // move

mkde " mkde/W // normalize probability
return mkde

KernelMean(t: double, t0: double, t1: double,
 x0: double, x1: double,
 y0: double ,y1: double,
 z0: double, z1: double)
 : double[3]

mu " double[3]
deltaT " t1 – t0
alpha " (t – t0)/deltaT
mu[0] " x0 + (x1 – x0)*alpha
mu[1] " y0 + (y1 – y0)*alpha
mu[2] " z0 + (z1 – z0)*alpha
return mu

KernelVar(t: double, t0: double, t1: double,
 obVarXY0: double, obVarXY1: double,
 obVarZ0: double, obVarZ1: double,
 mvVarXY: double, mvVarZ: double)
 : double[3]

var " double[3]
deltaT " t1 – t0
alpha " (t – t0)/deltaT
xyVar " deltaT*alpha*(1–alpha)*mvVarXY +
 (1–alpha)*(1–alpha)*obVarXY0 +
 alpha*alpha*obVarXY1
var[0] " xyVar
var[1] " xyVar
var[2] " deltaT*alpha*(1–alpha)*mvVarZ +
 (1–alpha)*(1–alpha)* obVarZ0 +
 alpha*alpha* obVarZ1
return var

IntegrateNormal(x0: double, x1: double,
 mu: double, var: double)
 : double
prob " Phi((x1-mu / sqrt(var)) –
 Phi((x0- mu)/ sqrt(var))
return prob

